Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Tyloses and phenolic deposits in xylem vessels impede water transport in low-lignin transgenic poplars: a study by cryo-fluorescence microscopy.

Identifieur interne : 003061 ( Main/Exploration ); précédent : 003060; suivant : 003062

Tyloses and phenolic deposits in xylem vessels impede water transport in low-lignin transgenic poplars: a study by cryo-fluorescence microscopy.

Auteurs : Peter Kitin [Belgique] ; Steven L. Voelker ; Frederick C. Meinzer ; Hans Beeckman ; Steven H. Strauss ; Barbara Lachenbruch

Source :

RBID : pubmed:20639405

Descripteurs français

English descriptors

Abstract

Of 14 transgenic poplar genotypes (Populus tremula × Populus alba) with antisense 4-coumarate:coenzyme A ligase that were grown in the field for 2 years, five that had substantial lignin reductions also had greatly reduced xylem-specific conductivity compared with that of control trees and those transgenic events with small reductions in lignin. For the two events with the lowest xylem lignin contents (greater than 40% reduction), we used light microscopy methods and acid fuchsin dye ascent studies to clarify what caused their reduced transport efficiency. A novel protocol involving dye stabilization and cryo-fluorescence microscopy enabled us to visualize the dye at the cellular level and to identify water-conducting pathways in the xylem. Cryo-fixed branch segments were planed in the frozen state on a sliding cryo-microtome and observed with an epifluorescence microscope equipped with a cryo-stage. We could then distinguish clearly between phenolic-occluded vessels, conductive (stain-filled) vessels, and nonconductive (water- or gas-filled) vessels. Low-lignin trees contained areas of nonconductive, brown xylem with patches of collapsed cells and patches of noncollapsed cells filled with phenolics. In contrast, phenolics and nonconductive vessels were rarely observed in normal colored wood of the low-lignin events. The results of cryo-fluorescence light microscopy were supported by observations with a confocal microscope after freeze drying of cryo-planed samples. Moreover, after extraction of the phenolics, confocal microscopy revealed that many of the vessels in the nonconductive xylem were blocked with tyloses. We conclude that reduced transport efficiency of the transgenic low-lignin xylem was largely caused by blockages from tyloses and phenolic deposits within vessels rather than by xylem collapse.

DOI: 10.1104/pp.110.156224
PubMed: 20639405
PubMed Central: PMC2949004


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Tyloses and phenolic deposits in xylem vessels impede water transport in low-lignin transgenic poplars: a study by cryo-fluorescence microscopy.</title>
<author>
<name sortKey="Kitin, Peter" sort="Kitin, Peter" uniqKey="Kitin P" first="Peter" last="Kitin">Peter Kitin</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratory for Wood Biology and Xylarium, Royal Museum for Central Africa, Tervuren, Belgium. peter.kitin@oregonstate.edu</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Laboratory for Wood Biology and Xylarium, Royal Museum for Central Africa, Tervuren</wicri:regionArea>
<wicri:noRegion>Tervuren</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Voelker, Steven L" sort="Voelker, Steven L" uniqKey="Voelker S" first="Steven L" last="Voelker">Steven L. Voelker</name>
</author>
<author>
<name sortKey="Meinzer, Frederick C" sort="Meinzer, Frederick C" uniqKey="Meinzer F" first="Frederick C" last="Meinzer">Frederick C. Meinzer</name>
</author>
<author>
<name sortKey="Beeckman, Hans" sort="Beeckman, Hans" uniqKey="Beeckman H" first="Hans" last="Beeckman">Hans Beeckman</name>
</author>
<author>
<name sortKey="Strauss, Steven H" sort="Strauss, Steven H" uniqKey="Strauss S" first="Steven H" last="Strauss">Steven H. Strauss</name>
</author>
<author>
<name sortKey="Lachenbruch, Barbara" sort="Lachenbruch, Barbara" uniqKey="Lachenbruch B" first="Barbara" last="Lachenbruch">Barbara Lachenbruch</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20639405</idno>
<idno type="pmid">20639405</idno>
<idno type="doi">10.1104/pp.110.156224</idno>
<idno type="pmc">PMC2949004</idno>
<idno type="wicri:Area/Main/Corpus">003122</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003122</idno>
<idno type="wicri:Area/Main/Curation">003122</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003122</idno>
<idno type="wicri:Area/Main/Exploration">003122</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Tyloses and phenolic deposits in xylem vessels impede water transport in low-lignin transgenic poplars: a study by cryo-fluorescence microscopy.</title>
<author>
<name sortKey="Kitin, Peter" sort="Kitin, Peter" uniqKey="Kitin P" first="Peter" last="Kitin">Peter Kitin</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratory for Wood Biology and Xylarium, Royal Museum for Central Africa, Tervuren, Belgium. peter.kitin@oregonstate.edu</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Laboratory for Wood Biology and Xylarium, Royal Museum for Central Africa, Tervuren</wicri:regionArea>
<wicri:noRegion>Tervuren</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Voelker, Steven L" sort="Voelker, Steven L" uniqKey="Voelker S" first="Steven L" last="Voelker">Steven L. Voelker</name>
</author>
<author>
<name sortKey="Meinzer, Frederick C" sort="Meinzer, Frederick C" uniqKey="Meinzer F" first="Frederick C" last="Meinzer">Frederick C. Meinzer</name>
</author>
<author>
<name sortKey="Beeckman, Hans" sort="Beeckman, Hans" uniqKey="Beeckman H" first="Hans" last="Beeckman">Hans Beeckman</name>
</author>
<author>
<name sortKey="Strauss, Steven H" sort="Strauss, Steven H" uniqKey="Strauss S" first="Steven H" last="Strauss">Steven H. Strauss</name>
</author>
<author>
<name sortKey="Lachenbruch, Barbara" sort="Lachenbruch, Barbara" uniqKey="Lachenbruch B" first="Barbara" last="Lachenbruch">Barbara Lachenbruch</name>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="eISSN">1532-2548</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biological Transport (MeSH)</term>
<term>Cellulose (analogs & derivatives)</term>
<term>Cellulose (metabolism)</term>
<term>Coenzyme A Ligases (metabolism)</term>
<term>Lignin (chemistry)</term>
<term>Microscopy, Confocal (MeSH)</term>
<term>Microscopy, Fluorescence (MeSH)</term>
<term>Phenols (metabolism)</term>
<term>Plants, Genetically Modified (enzymology)</term>
<term>Plants, Genetically Modified (physiology)</term>
<term>Populus (enzymology)</term>
<term>Populus (physiology)</term>
<term>Water (metabolism)</term>
<term>Xylem (anatomy & histology)</term>
<term>Xylem (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Cellulose (analogues et dérivés)</term>
<term>Cellulose (métabolisme)</term>
<term>Coenzyme A ligases (métabolisme)</term>
<term>Eau (métabolisme)</term>
<term>Lignine (composition chimique)</term>
<term>Microscopie confocale (MeSH)</term>
<term>Microscopie de fluorescence (MeSH)</term>
<term>Phénols (métabolisme)</term>
<term>Populus (enzymologie)</term>
<term>Populus (physiologie)</term>
<term>Transport biologique (MeSH)</term>
<term>Végétaux génétiquement modifiés (enzymologie)</term>
<term>Végétaux génétiquement modifiés (physiologie)</term>
<term>Xylème (anatomie et histologie)</term>
<term>Xylème (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analogs & derivatives" xml:lang="en">
<term>Cellulose</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Lignin</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cellulose</term>
<term>Coenzyme A Ligases</term>
<term>Phenols</term>
<term>Water</term>
</keywords>
<keywords scheme="MESH" qualifier="analogues et dérivés" xml:lang="fr">
<term>Cellulose</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomie et histologie" xml:lang="fr">
<term>Xylème</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomy & histology" xml:lang="en">
<term>Xylem</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Lignine</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Populus</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Plants, Genetically Modified</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Xylem</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cellulose</term>
<term>Coenzyme A ligases</term>
<term>Eau</term>
<term>Phénols</term>
<term>Xylème</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Populus</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Plants, Genetically Modified</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biological Transport</term>
<term>Microscopy, Confocal</term>
<term>Microscopy, Fluorescence</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Microscopie confocale</term>
<term>Microscopie de fluorescence</term>
<term>Transport biologique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Of 14 transgenic poplar genotypes (Populus tremula × Populus alba) with antisense 4-coumarate:coenzyme A ligase that were grown in the field for 2 years, five that had substantial lignin reductions also had greatly reduced xylem-specific conductivity compared with that of control trees and those transgenic events with small reductions in lignin. For the two events with the lowest xylem lignin contents (greater than 40% reduction), we used light microscopy methods and acid fuchsin dye ascent studies to clarify what caused their reduced transport efficiency. A novel protocol involving dye stabilization and cryo-fluorescence microscopy enabled us to visualize the dye at the cellular level and to identify water-conducting pathways in the xylem. Cryo-fixed branch segments were planed in the frozen state on a sliding cryo-microtome and observed with an epifluorescence microscope equipped with a cryo-stage. We could then distinguish clearly between phenolic-occluded vessels, conductive (stain-filled) vessels, and nonconductive (water- or gas-filled) vessels. Low-lignin trees contained areas of nonconductive, brown xylem with patches of collapsed cells and patches of noncollapsed cells filled with phenolics. In contrast, phenolics and nonconductive vessels were rarely observed in normal colored wood of the low-lignin events. The results of cryo-fluorescence light microscopy were supported by observations with a confocal microscope after freeze drying of cryo-planed samples. Moreover, after extraction of the phenolics, confocal microscopy revealed that many of the vessels in the nonconductive xylem were blocked with tyloses. We conclude that reduced transport efficiency of the transgenic low-lignin xylem was largely caused by blockages from tyloses and phenolic deposits within vessels rather than by xylem collapse.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20639405</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>01</Month>
<Day>03</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>22</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1532-2548</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>154</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2010</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Tyloses and phenolic deposits in xylem vessels impede water transport in low-lignin transgenic poplars: a study by cryo-fluorescence microscopy.</ArticleTitle>
<Pagination>
<MedlinePgn>887-98</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1104/pp.110.156224</ELocationID>
<Abstract>
<AbstractText>Of 14 transgenic poplar genotypes (Populus tremula × Populus alba) with antisense 4-coumarate:coenzyme A ligase that were grown in the field for 2 years, five that had substantial lignin reductions also had greatly reduced xylem-specific conductivity compared with that of control trees and those transgenic events with small reductions in lignin. For the two events with the lowest xylem lignin contents (greater than 40% reduction), we used light microscopy methods and acid fuchsin dye ascent studies to clarify what caused their reduced transport efficiency. A novel protocol involving dye stabilization and cryo-fluorescence microscopy enabled us to visualize the dye at the cellular level and to identify water-conducting pathways in the xylem. Cryo-fixed branch segments were planed in the frozen state on a sliding cryo-microtome and observed with an epifluorescence microscope equipped with a cryo-stage. We could then distinguish clearly between phenolic-occluded vessels, conductive (stain-filled) vessels, and nonconductive (water- or gas-filled) vessels. Low-lignin trees contained areas of nonconductive, brown xylem with patches of collapsed cells and patches of noncollapsed cells filled with phenolics. In contrast, phenolics and nonconductive vessels were rarely observed in normal colored wood of the low-lignin events. The results of cryo-fluorescence light microscopy were supported by observations with a confocal microscope after freeze drying of cryo-planed samples. Moreover, after extraction of the phenolics, confocal microscopy revealed that many of the vessels in the nonconductive xylem were blocked with tyloses. We conclude that reduced transport efficiency of the transgenic low-lignin xylem was largely caused by blockages from tyloses and phenolic deposits within vessels rather than by xylem collapse.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kitin</LastName>
<ForeName>Peter</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Laboratory for Wood Biology and Xylarium, Royal Museum for Central Africa, Tervuren, Belgium. peter.kitin@oregonstate.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Voelker</LastName>
<ForeName>Steven L</ForeName>
<Initials>SL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Meinzer</LastName>
<ForeName>Frederick C</ForeName>
<Initials>FC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Beeckman</LastName>
<ForeName>Hans</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Strauss</LastName>
<ForeName>Steven H</ForeName>
<Initials>SH</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lachenbruch</LastName>
<ForeName>Barbara</ForeName>
<Initials>B</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>1S10RR107903-01</GrantID>
<Acronym>RR</Acronym>
<Agency>NCRR NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>07</Month>
<Day>16</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010636">Phenols</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C017962">Tyloses</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>059QF0KO0R</RegistryNumber>
<NameOfSubstance UI="D014867">Water</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9004-34-6</RegistryNumber>
<NameOfSubstance UI="D002482">Cellulose</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9005-53-2</RegistryNumber>
<NameOfSubstance UI="D008031">Lignin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 6.2.1.-</RegistryNumber>
<NameOfSubstance UI="D003066">Coenzyme A Ligases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001692" MajorTopicYN="N">Biological Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002482" MajorTopicYN="N">Cellulose</DescriptorName>
<QualifierName UI="Q000031" MajorTopicYN="Y">analogs & derivatives</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003066" MajorTopicYN="N">Coenzyme A Ligases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008031" MajorTopicYN="N">Lignin</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018613" MajorTopicYN="N">Microscopy, Confocal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008856" MajorTopicYN="N">Microscopy, Fluorescence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010636" MajorTopicYN="N">Phenols</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014867" MajorTopicYN="N">Water</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D052584" MajorTopicYN="N">Xylem</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>7</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>7</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>1</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20639405</ArticleId>
<ArticleId IdType="pii">pp.110.156224</ArticleId>
<ArticleId IdType="doi">10.1104/pp.110.156224</ArticleId>
<ArticleId IdType="pmc">PMC2949004</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Physiol. 1999 May;120(1):7-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10318678</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 1999 Aug;17(8):808-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10429249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Nov 24;275(47):36899-909</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10934215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2001 Apr;26(2):205-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11389761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2001 Nov;28(3):271-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11722770</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Jan;128(1):282-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11788773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2002 Feb;25(2):265-274</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11841669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Feb;128(2):428-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11842147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Apr;30(1):47-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11967092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2002 Jun;20(6):607-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12042866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1997 Jul;114(3):871-879</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12223748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1997 Sep;115(1):41-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12223790</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1996 Dec;112(4):1479-1490</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12226459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2002 Oct;61(3):221-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12359514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protoplasma. 2002 Oct;220(1-2):17-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12417933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2000 Apr;20(8):535-540</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12651434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Apr 15;100(8):4939-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12668766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Apr;131(4):1826-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12692342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2003;54:519-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14503002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Biochem Mol Biol. 2003;38(4):305-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14551235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Jan;134(1):401-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14657404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2003 Dec;8(12):576-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14659706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2004 Jan;9(1):49-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14729219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2004 Aug;140(4):543-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15232729</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Dec 14;101(50):17555-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15574502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2005 Mar;25(3):257-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15631974</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2005 Mar;25(3):269-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15631975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Mar;165(3):839-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15720695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Mar;137(3):1139-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15734905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2005 Oct;25(10):1243-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16076773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2005 Sep;66(17):2072-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16099486</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Nov;168(2):275-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16219068</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;172(1):47-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16945088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Genet Eng Rev. 2004;21:229-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17017035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2007 Jan;30(1):19-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17177873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2007;58(3):593-614</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17220514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Jan;19(1):148-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17237352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;173(4):732-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17286822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2007 Jul;27(7):993-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17403652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2007 May;30(5):559-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17407534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2007 Jul;25(7):759-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17572667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2007 Nov-Dec;68(22-24):2722-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17643453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Oct;52(2):263-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17727617</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Nov;19(11):3669-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18024569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;177(3):608-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18086228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Jan;53(2):368-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18184422</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2007 Dec;12(12):556-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18198522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Mar 18;105(11):4501-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18316744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2008 Jun;11(3):278-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18434238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2008 Oct 7;275(1648):2221-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18595839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Nov;148(3):1229-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18805953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Jan;149(1):370-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18971431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2009 Jun;20(3):286-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19481436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 May;22(5):1620-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20511296</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Oct;154(2):874-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20729393</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2007 Apr;94(4):640-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21636432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2006 Oct;93(10):1433-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21642090</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2006 Nov;93(11):1588-600</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21642104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2001 Feb;126(4):457-461</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28547229</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Stain Technol. 1975 Sep;50(5):315-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">54955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1995 May;108(1):85-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7784527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1997 Nov;9(11):1985-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9401123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1998 Feb;116(2):743-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9489021</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Apr 28;95(9):5407-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9560289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1998 May;117(1):101-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9576779</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Belgique</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Beeckman, Hans" sort="Beeckman, Hans" uniqKey="Beeckman H" first="Hans" last="Beeckman">Hans Beeckman</name>
<name sortKey="Lachenbruch, Barbara" sort="Lachenbruch, Barbara" uniqKey="Lachenbruch B" first="Barbara" last="Lachenbruch">Barbara Lachenbruch</name>
<name sortKey="Meinzer, Frederick C" sort="Meinzer, Frederick C" uniqKey="Meinzer F" first="Frederick C" last="Meinzer">Frederick C. Meinzer</name>
<name sortKey="Strauss, Steven H" sort="Strauss, Steven H" uniqKey="Strauss S" first="Steven H" last="Strauss">Steven H. Strauss</name>
<name sortKey="Voelker, Steven L" sort="Voelker, Steven L" uniqKey="Voelker S" first="Steven L" last="Voelker">Steven L. Voelker</name>
</noCountry>
<country name="Belgique">
<noRegion>
<name sortKey="Kitin, Peter" sort="Kitin, Peter" uniqKey="Kitin P" first="Peter" last="Kitin">Peter Kitin</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003061 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003061 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:20639405
   |texte=   Tyloses and phenolic deposits in xylem vessels impede water transport in low-lignin transgenic poplars: a study by cryo-fluorescence microscopy.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:20639405" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020